Measurement of Radiation:
Dose – Part 1

George Starkschall, Ph.D.
Department of Radiation Physics
U.T. M.D. Anderson Cancer Center

Purpose

• To introduce the concept of absorbed dose and to describe and evaluate methods for measuring dose
• This lecture – dosimetric methods other than ion chamber dosimetry
• Next lecture – ion chamber dosimetry

Exposure vs dose

• Exposure – amount of radiation present in beam
 – Severe limitations as to applicability
 – Biological changes function of radiation absorbed
• Dose – ionizing radiation absorbed per unit mass of absorbing material
Unit of dose

- Unit of dose – Gray (Gy)
 - 1 Gy = 1 J/kg
- Older unit of dose – rad (“radiation absorbed dose”)
 - 1 rad = 100 ergs/g = 0.01 Gy (1 cGy)

Definition of dose

- Let
 - \(E \) = energy deposited in small mass of target material
 - \(m \) = mass of target material
- Then \(D (\text{Gy}) = \frac{E (\text{J})}{m (\text{kg})} \)
- In air, 1 R = \(86.9 \times 10^{-4} \text{ J/kg} = 0.869 \text{ cGy} \)

Biological response

- Biological response also a function of nature of the radiation
- Define relative biological effectiveness (RBE)
 \(\text{RBE} = \frac{\text{dose of reference radiation to produce given response}}{\text{dose of radiation in question to produce same response}} \)
 \(\text{RBE dose (rem)} = \text{dose (rad)} \times \text{RBE} \)
Biological response

- For x-rays and γ rays, usually take RBE=1
 - somewhat higher for neutrons, π mesons, etc
- RBE a function of radiation, also of biological response

Measurement of dose

- Fundamental measurement from definition: measure amount of energy absorbed in target material
- Easier than to measure ionization
- Must convert energy of ionizing radiation into some other form of energy that is easier to measure

Calorimetry

- Radiation energy converted into heat energy
 - Heat causes temperature rise
 - Temperature rise can be measured
 - Energy absorbed by target material – E
 - Temperature rise – ΔT
Calorimetry

- Radiation energy converted into heat energy
 - Then \(E = C \Delta T \)
 - \(C \) – specific heat – property of target material

- Radiation dose \(D = C \Delta T/m \)

Calorimetry

- Example: The specific heat of graphite is 170 cal/kg°C. What is the absorbed dose in a graphite block of a calorimeter if the temperature of the block increases by 0.2 Celsius degrees?

\[
D = \frac{4.186 \times 10^2 \text{cal/kg°C}(0.2 \text{ °C})}{10^{-2}}
\]

\[
= 4.186 \times 10^2 \times 170 \times 0.2
\]

\[
= 14,200 \text{ cGy}
\]
Calorimetry

- Absolute measurement of dose
 - Does not need calibration
 - Can be used as dose standard

Disadvantages:
- ΔT very small
 - Require sensitive temperature measuring device
- Require heavily insulated target material
 - Only temperature rise due to radiation and not due to thermal conduction with surroundings
- Calorimetry not generally used as clinical technique

Film dosimetry

- Absorption of radiation causes chemical change in silver halide crystals giving rise to deposition of metallic silver
- Amount of deposition (film blackening) related to amount of radiation absorbed
Film dosimetry

- Transmission of light:
 \[T = \frac{I}{I_0} \]
- Optical density:
 \[D = \log\left(\frac{1}{T}\right) \]

Generally measure \(D \) vs \(\log E \)

- \(E \): exposure
- Procedure is to measure optical density and refer to calibration curve
- Significant advantage of film dosimetry – very good spatial resolution

Disadvantages:
- Requires calibration - HD curve
- Limited range – latitude
 HD curve exhibits toe and shoulder
- Particularly sensitive to low-energy photons
 High absorption for photoelectric effect due to high \(Z \) of silver enhances contribution from low energy scattered photons
 Newer films exhibit less sensitivity to low-energy photons
Film dosimetry

- Excellent technique for measuring dose distributions for electron beams
 - No low energy photons
 - Electron beam distributions have sharp gradients
 - Take advantage of spatial resolution of film
 - Get hard copy of dose record

- Also useful for measuring isodose curves for megavoltage photon beams
 - Accuracy of ~3%

Radiochromic film

- Thin layer of radiosensitive dye bonded to Mylar base
- Measure degree of coloring with spectrophotometer or laser scanner
- Almost tissue equivalent (effective Z of 6.0 – 6.5)
- Must be calibrated prior to use
Chemical dosimetry

- Radiation-induced chemical reactions
 - Number of molecules affected is function of energy absorbed
 - Define G-value: \(G \) = number of molecules affected per 100 eV absorbed

Chemical dosimetry

- Common reaction:
 \(\text{Fe}^{2+} + \text{photon} \rightarrow \text{Fe}^{3+} + e^- \) – Fricke dosimeter
 \(G = 15.4 \text{ molecules/100 eV for x rays or } \gamma \text{ rays} \)
 Measure \(\text{Fe}^{3+} \) concentration by measuring transmission of uv light

Chemical dosimetry

- Disadvantages:
 - Requires large doses (50 – 500 Gy)

- Advantages:
 - Absolute measurement
 - Can measure dose to irregularly shaped volumes
Gel dosimetry

• Early application – Fe$^{2+}$ ions in gel matrix
 – Change to Fe$^{3+}$ gives rise to change in paramagnetic properties
 – Quantify using MRI – T1 parameter can be related to dose
 – Limitations due to diffusion of Fe$^{3+}$ ions through gel

Gel dosimetry

• Maryanski et al – 1993
 – Radiation-induced polymerization of acrylamide gels
 – Polymerization affects optical characteristics
 • Measure degree of polymerization via optical computed tomography

Gel dosimetry

• Applications
 – Dosimetry in 3D volumes – verify dose distribution from complicated beam arrangements

Photo courtesy of G. Ibbott, Ph.D.
Gel dosimetry

- **Applications**
 - Brachytherapy dose distributions
 - Neutron and other particle dose distributions

- **Problems**
 - Presence of oxygen adversely affects some polymerizations
 - Absence of heterogeneities
 - Cost

Thermoluminescent dosimetry

- Radiation excites electrons to metastable energy levels in crystals
- Heat causes electrons to return to ground state giving off light
- Amount of light proportional to radiation received
Thermoluminescent dosimetry

• Generally use LiF – $Z_{eff} = 8.18$
• Compares with soft tissue (7.4) or air (7.65)
• Slight energy dependence

Thermoluminescent dosimetry

• Disadvantages:
 – Must be calibrated at correct energy

• Advantages:
 – Ease of handling, compact size
 – Measurement can take place some time after irradiation
 – High accuracy – better than 1%

Thermoluminescent dosimetry

• Applications:
 – Routine *in vivo* dosimetry
 – Intercomparisons