Monitor Unit Calculations – Part 3

George Starkschall, Ph.D.
Department of Radiation Physics
U.T. M.D. Anderson Cancer Center

Calculation of machine setting

\[
\text{machine setting} = \frac{\text{reference dose}}{\text{reference dose output}} \times \text{correction for collimator setting} \times \text{correction for distance from source} \times \text{correction for beam modifiers} \times \text{correction for attenuation and scatter}
\]

Percent depth dose (PDD, %dd)

• Two types of patient set-ups
 – Isocentric set-ups
 – Fixed SSD set-ups
Percent depth dose (PDD, %dd)

- **Isocentric set-ups**: center of tumor (treatment volume) placed at isocenter – TAR logical quantity to use

- **Fixed SSD set-ups**: entry point of beam is placed at fixed distance from source (usually the isocenter)
 - Center of treatment volume then at SSD+d from source
 - TAR not as convenient to use for calculations

Percent depth dose (PDD, %dd)

- Let
 - \(D_n \) – dose delivered to small mass of tissue at depth within patient
 - \(D_0 \) – dose delivered to same mass of tissue at a depth \(d_{max} \), keeping SSD same
- **PDD defined as**
 \[
 PDD = \left(\frac{D_n}{D_0} \right) \times 100\%
 \]
Percent depth dose (PDD, %dd)

\[
PDD = \left(\frac{D_n}{D_0} \right) \times 100\%
\]

Example:

- Calculate treatment time required to deliver 150 cGy to point 7 cm below surface using 8 cm \(\times \) 8 cm \(^{60}\)Co beam at SSD of 80 cm with dose rate of 135.3 cGy/min at \(d_{\text{max}} \).

- Prescribed dose – 150 cGy
- PDD for 8 cm \(\times \) 8 cm \(^{60}\)Co beam at depth of 7 cm is 67.6%
- Given dose is

\[150 \text{ cGy}/0.676 = 222 \text{ cGy}\]
Percent depth dose (PDD, %dd)

- Dose rate at d_{max} is 135.3 cGy/min so treatment time is

 $\frac{222 \text{ cGy}}{135.3 \text{ cGy/min}} = 1.61 \text{ min}$

Percent depth dose (PDD, %dd)

- Effect of depth:
 - In buildup region (depths $< d_{\text{max}}$) PDD increases with increasing depth

Percent depth dose (PDD, %dd)

- Effect of depth:
 - At d_{max}, PDD is 100%
 - Beyond d_{max}, PDD decreases with increasing depth due to beam divergence and attenuation
Percent depth dose (PDD, %dd)

- **Effect of beam quality:**
 - Depth of central axis maximum increases with beam energy
 - Beyond d_{max}, PDD at given depth increases with increasing beam energy

- **Effect of field size:**
 - For given beam energy, PDD increases with field size, because larger area from which radiation can be scattered

- **Effect of SSD:**
 - As SSD increases, dose rate decreases
 - As SSD increases, PDD increases because effect of beam divergence reduced
Percent depth dose (PDD, %dd)

- Find PDD tables:
 - For 60Co – BJR, Supplement 25
 - For specific linacs – physics data notebook for specific machine
 - Important to use correct table for appropriate machine and for appropriate SSD, because PDD is dependent on SSD

Tissue-maximum ratio (TMR)

- Although TAR useful for treatment time calculations, limits to applicability result from need to measure in-air dose rate
 - For 60Co energies or lower, in-air measurements not a problem
 - For high photon energies, in-air measurements extremely difficult

- Use a large amount of buildup material on ionization chamber
 - Produces scattered radiation
 - For small fields, buildup cap may not necessarily be completely included in field
- Other quantity needed to replace TAR for high-energy photons
Tissue-maximum ratio (TMR)

- Make reference measurement in phantom at depth d_{max}
 - Ratio is *tissue maximum ratio (TMR)* defined by

$$TMR = \frac{D(\text{depth})}{D(d_{\text{max}})}$$

Tissue-maximum ratio (TMR)

- Definition of TMR directly related to calibration procedure for photon beams
 - Express calibrated dose rate of photon beam at standard field size at depth of d_{max}
Tissue-maximum ratio (TMR)

Example:
• 6 MV linac calibrated to deliver 1 cGy/MU for 10 cm × 10 cm field at depth of d_max at 100 cm from source
• For 12 cm × 16 cm field
 – Output factor = 1.010
 – TMR at depth of 8 cm = 0.887

Example:
• Calculate monitor units to deliver 300 cGy to 12 cm × 16 cm field at midline using parallel opposed fields at SAD of 100 cm
• The patient thickness is 16 cm

Tissue-maximum ratio (TMR)

Example:
• Dose rate at d_max for 10 cm × 10 cm field – 1 cGy/MU
• Dose rate at d_max for 12 cm × 16 cm field is 1 cGy/MU × 1.010 = 1.010 cGy/MU
• Dose rate at 8 cm depth for 12 cm × 16 cm field is 1.010 cGy/MU × 0.887 = 0.896 cGy/MU
Tissue-maximum ratio (TMR)

- To deliver 150 cGy/field, monitor units required is

\[
\frac{150 \text{ cGy}}{0.896 \text{ cGy/MU}} = 167 \text{ MU}
\]

- TMR must be measured for each radiation machine
 - Best source of TMR data: physics data book (or file) for particular treatment machine

Tissue-phantom ratio (TPR)

- Use dose rate at specified depth as reference measurement
 - Tissue phantom ratio (TPR) defined as

\[
TPR = \frac{D(\text{depth})}{D(\text{ref depth})}
\]