1. What is multi-detector CT?

2. How is CT used in Radiation Oncology?

Acknowledgement

Borrowed some slides from Dr. Dianna Cody, Dept of Imaging Physics, MDACC
Axial Platforms:
Step and shoot, rewind coil between slices

Helical or Spiral CT
- Slip-ring gantry allows continuous rotation
- Reduction of interscan delays
- Constant table motion during scanning
- Special reconstruction methods developed

Slip-ring
Spiral **Pitch** Definition

- **Image and beam width are same for conventional axial CT**
- **Pitch = table travel per rotation ÷ beam width**
- **Typical pitch values are 0.5 to 2.0**

Pitch

For Pitch < 1
- Spirals overlap
- Dose is increased (at same mAs)

For Pitch = 1
- Similar to Axial

For Pitch > 1
- Spirals are stretched
- Dose is decreased (at same mAs)

Image Examples

- **Pitch affects image quality:**
- GE LightSpeed RT

Pitch=0.75 Pitch=1.5

4×1.25
Helical Interpolation

Collect data (black dots)
Interpolate to estimate image between collected data

Advantage: Can reconstruct slices at any position with any interval. Increased resolution in axial (z)-direction.

Multi-Channel CT

- Acquisition of multiple images per scan
- Faster volume acquisition times
- Better bolus tracking and thin slices for 3D

Multi-Channel CT detectors

Table direction (z-axis)

64 x 0.625 mm
Detectors - GE LightSpeed RT

A 4-channel system: 16 @ 1.25mm, total 20mm

<table>
<thead>
<tr>
<th>Detector Configuration</th>
<th>Pitch = 0.75</th>
<th>Pitch = 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4×1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4×2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4×3.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4×5.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCCT Detectors

Detector Configuration Affects Image Quality: GE LS RT

- Pitch = 0.75
- Pitch = 1.5

Detector Configuration

- 4×1.25
- 4×2.5
Image Examples: GE LS RT

- **Detector configuration**
 - 4×1.25
 - 4×2.5

Multi-Channel CT

- Helical non-planar data
- Data from multiple channels

- Consequences of MCCT
 - Breath hold feasible
 - However, high scan speed may not be desirable in Rad Onc
 - Problem with synchrony of table motion and diaphragm motion giving rise to artifacts
 - That leads to 4D or average CT
Control Console

- Scan protocols
- Data management
- Image reconstruction
- Image analysis tools
- Network/PACS connectivity
- Archive media

CT – Covers Off

- HV Transformer
- X-ray Tube Housing
- Detector array

Generator

- **kVp**
 - Kilovolts-peak id voltage across tube
 - (relates to max energy of x-ray beam)
- **mA**
 - Current across tube
 - (relates to number x-ray photons produced)
- **Power rating 30 – 60 kW**
 - \[\text{kW} = \frac{\text{kV} \times \text{mA}}{1000} \]
 - @ 120kVp, 60kW gen has max 500mA
 - Practical limit is less than max available
Spatial Resolution

- Display Field of View (DFOV)
- Reconstruction filter (kernel)
- X-ray tube focal spot size
- Image thickness (blurs edges of objects)
- Pitch (blurs edges of objects)
- Patient motion
- Image zoom

Effects of Recon Filters on Resolution & Noise

Contrast Resolution

- Effective mAs
 \(\text{mA} \times \text{time} / \text{pitch} \)
- Image thickness
- Patient size
- Reconstruction filter
- Viewing conditions
ACR Phantom - Low Contrast Section

120 kVp, 1600 mAs 120 kVp, 192 mAs

Partial Volume Averaging

Contrast
- Distance
- Ambient (room) lighting
 - Cannot see the stars in the daytime
- Monitor brightness
- Reflections
- Viewing angle (flat screens)
- [Age of eyeballs .]

Viewing Conditions - Contrast
Pixel bit-depth of $2^{12} = 4096$ values

Contrast scale

$$\text{HU} = 1000 \times \frac{(\mu - \mu_{\text{water}})}{\mu_{\text{water}}}$$

- CT number for water = 0 HU
- CT number range: -1024 to +3072 HU

CT number affected by KVP

CT number in Pinnacle Treatment Planning System is $\text{HU}+1000$, 12-bit unsigned integer (detail in part 2)
Resolution Related with DFOV

- 25 cm DFOV
 - Pixel = ~ 0.5 mm

- 50 cm DFOV
 - Pixel = ~ 1 mm

Image Display

- The human eye resolves 256 shades of gray
- Display monitors have about 2^8 gray levels
- Digital CT data has 4096 possible values
- WW/WL to select desired CT numbers for display with 256 shades of gray
Typical CT Numbers (HU)

- Air: -1000
- Lung: ~ -700
- Fat: ~ -120 to ~ -80
- Water: 0 +/- 5
- Brain: ~ 40
- Soft Tissue: 40 to ~ 100
- Bone: 200 to > 600
- Metal: > 1000

2. CT Application in Radiation Oncology

Different from CT in Diagnostic Imaging

CT simulation control area: More complicated
Differences

- Patient group
- Imaging purpose
- Bore size
- Couch
- Laser alignment
- Software
- QA procedure
- Clinical protocols/procedures

Patient Group (in a cancer center)

- Diagnostic CT: screen or diagnostic
 - General public suspected to have cancers
 - Previously cured cancer patients for follow up
 - Diagnosed cancer patients for metastases, staging or treatment evaluation
 Large group: ~23,000 patients seen by MDACC
- Therapy CT in Radiation Oncology
 - Diagnosed cancer patients who will receive radiation treatment
 - For treatment planning purposes
 Small group: ~6,500 evaluated, 5,000 treated, ~1:4

Imaging Purpose: Diagnostic CT

- Requires high image quality
 See lesions, diagnosis
- Requires low dose
 To reduce stochastic risk: radiation generated cancer or carcinogenesis
- Gold Standard in DI about radiation: ALARA
 As Low As Reasonably Achievable
Imaging Purpose: Therapy CT (1)

- Treatment planning and simulation
- Accuracy and reproducibility of patient positioning - Extremely important!
- Imaging position must represent treatment position

A Linac Treatment Machine

Imaging Purpose: Therapy CT (2)

- Treatment planning and simulation
 - Image entire outline of the patient - No truncation is allowed
 - Spatial accuracy extremely important

 Patient imaged 3 times to get rid of truncation!!

Display Field of View (DFOV)

- Image Matrix: 512 × 512 pixels
- Diagnostic: Optimized DFOV
 - Head, 16 - 25cm, 25 most common
 - Body, 25 - 50 cm, 36 most common
- Therapy: Large DFOV
 - Head, 50 cm (35cm for Stereotactic Radiosurgery only)
 - Partial shoulder scan is included
 - Body, 50 - 65 cm (Extended DFOV)
Bore size

DFOV is limited by SFOV, hence bore size.

Large Bore

Diagnostic CT
- **Regular bore size GE 16-channel**
 - Bore Opening: 70 cm
 - SAD: 54 cm
 - SDD: 95 cm
 - SFOV: 50 cm

Therapy CT
- **Regular bore**
- **Large bore**
 - Philips:
 - Bore opening: 50 cm
 - FOV: 60 cm
 - GE 4-channel RT:
 - Bore opening: 50 cm
 - SAD: 61 cm
 - SDD: 106 cm
 - Field of View: 65 cm

Why need large bore CT?

- To enclose treatment accessories in the large bore when needed

Patient immobilization foam for a thoracic stereotactic patient.
Flat Couch: Therapy CT

Couch Sag – Serious problem
for Therapy

- When couch moves into the gantry, couch sags due to patient weight

Displacement

Not a problem for Diagnostic

- Serious concern for Therapy (2 mm positioning accuracy required)
 - Depending on manufacture and specific scanners, sag may vary in 1-6 mm
 - Correction method is still under investigation

Courtesy of Karl Prado, PhD
Complicated Immobilization Accessories

Complicated Laser System

Patient Throughput

- Diagnostic CT
 - 20 minutes/patient
 - Contrast generally used
- Therapy CT
 - Generally ~1 hour/patient
 - Positioning takes most time
 - Mark treatment center
 - Make customized immobilization device
 - Tattoo the patient

Patient Throughput

- Diagnostic CT
 - 20 minutes/patient
 - Contrast generally used
- Therapy CT
 - Generally ~1 hour/patient
 - Positioning takes most time
 - Mark treatment center
 - Make customized immobilization device
 - Tattoo the patient
Clinical Protocol: kVp

- Therapy CT – Fixed kVp for all patients
 - Hounsfield Units (HUs) converted to electron density to calculate patient dose in MeV treatment beam using keV CT data
 - HU varies with kVp
 - Only one calibration curve is stored in TPS, usually 120kVp is chosen

Electron Density v.s. HU Calibration Curve

Why electron density is needed?

- MeV beam attenuation is related with tissue electron density
- KeV beam attenuation (HU) is related with electron density and Z atomic number
- A conversion from HU to electron density is needed for treatment dose calculation for MeV beams
Clinical Protocol: Scan time

- **Therapy CT:** Free breathing
 - Free breathing to simulate treatment condition
 - Special CT applications, especially for lung patients
 - Average CT
 - Slow scan to get averaged tumor position
 - 4D CT
 - Cine mode, multiple scans in the same position, sort images according to breathing phase
 - Used in gated treatment

Example of Average CT

![Average CT Images]

Average CT

Example of 4D CT

![4D CT Images]

4D-CT images

Courtesy of Timu Pan, PhD
Summary

- Diagnostic Imaging CT
 Image Quality

- Therapy CT
 Position
 Image Quality